

- FREY ENVIRONMENTAL, INC.

Environmental Geologists, Engineers, Assessors

2817 A Lafayette Avenue Newport Beach, CA 92663 (949) 723-1645 Fax (949) 723-1854 Email: freyinc@freyinc.com

October 19, 2000 172-01

Steven Hariri Regional Water Quality Control Board Los Angeles Region 320 West 4th Street, Suite 200 Los Angeles, California 90013

GROUNDWATER MONITORING WELL SAMPLING THIRD QUARTER 2000 FORMER MONDO CHROME FACILITY 4933 FIRESTONE BOULEVARD SOUTH GATE, CALIFORNIA

Dear Mr. Hariri:

This letter presents the results of groundwater sampling activities for the third quarter of 2000 at the site of the former Mondo Chrome facility located at 4933 Firestone Boulevard in South Gate, California (Figure 1).

SUMMARY OF ACTIVITIES

On September 22, 2000, groundwater monitoring wells MW1, MW2 and MW3 were measured for depth to water and checked for the presence of light non-aqueous phase liquids (LNAPLs). LNAPLs were not detected in wells MW1, MW2 or MW3 which were then purged and sampled according to the procedures presented in Appendix A.

Groundwater samples were analyzed for purgeable halocarbons in general accordance with EPA Method No. 8021B. Groundwater samples were also analyzed for total chromium in general accordance with EPA Method No. 200.7.

Groundwater purged from the wells is temporarily being stored on-Site in 55-gallon drums. The purged groundwater will be transported and disposed of at a State-certified recycling facility at a later date.

RESULTS

- The depth to groundwater varied between 40.47 feet and 40.60 feet below the top of casing on September 22, 2000. Groundwater elevations ranged from 68.85 feet above mean sea level in well MW1 to 69.01 above mean sea level in well MW3 on September 22, 2000.
- Groundwater was estimated to flow toward the northwest at a gradient of 0.0013 feet per foot on September 22, 2000. A site sketch showing groundwater elevations and estimated direction of groundwater flow on September 22, 2000 is presented on Figure 2.
- Tetrachloroethene (PCE) and trichloroethene (TCE) were detected at concentrations of 111 micrograms per liter (ug/L) and 150 ug/L, respectively, in the water sample collected from well MW1. In addition, 1,1-dichloroethene (1,1-DCE) and cis-1,2-dichloroethene (cis-1,2-DCE) were detected at concentrations of 1.9 ug/L and 11 ug/L, respectively, in the water sample collected from well MW-1. No other compounds analyzed as part of EPA Method No. 8021B were detected in the groundwater sample collected from MW1.
- PCE and TCE were detected at concentrations of 3.79 ug/L and 72.6 ug/L, respectively, in the groundwater sample collected from well MW2. No other compounds analyzed as part of EPA Method No. 8021B were detected in the groundwater sample collected from MW2.
- PCE, TCE, cis-1,2-DCE and 1,1-DCE were detected at concentrations of 7.11 ug/L, 66 ug/L,
 4.97 ug/L and 1.61 ug/L, respectively, in the groundwater sample collected from well MW3.
 No other compounds analyzed as part of EPA Method No. 8021B were detected in the groundwater sample collected from MW3.
- Total chromium was detected at concentrations of 17 ug/L and 20 ug/L in groundwater samples collected from MW2 and MW3, respectively. Total chromium was not detected in the groundwater sample collected from well MW1.
- Calculated groundwater elevations and chemical analytical data have been summarized in Table 1. Laboratory reports are presented in Appendix B.

CONCLUSIONS

• In general, concentrations of purgeable halocarbons and total chromium in groundwater samples collected from wells MW1, MW2 and MW3 decreased significantly between June 26, 2000 and September 22, 2000.

Sincerely,

FREY Environmental, Inc

Joe Frey

Principal Certified

Engineering Geologist

CEG #1500

Evan Privet

Senior Project Geologist

Enclosures:

Table 1 - Groundwater Levels and Chemical Analyses

Figure 1 - Site Location Map

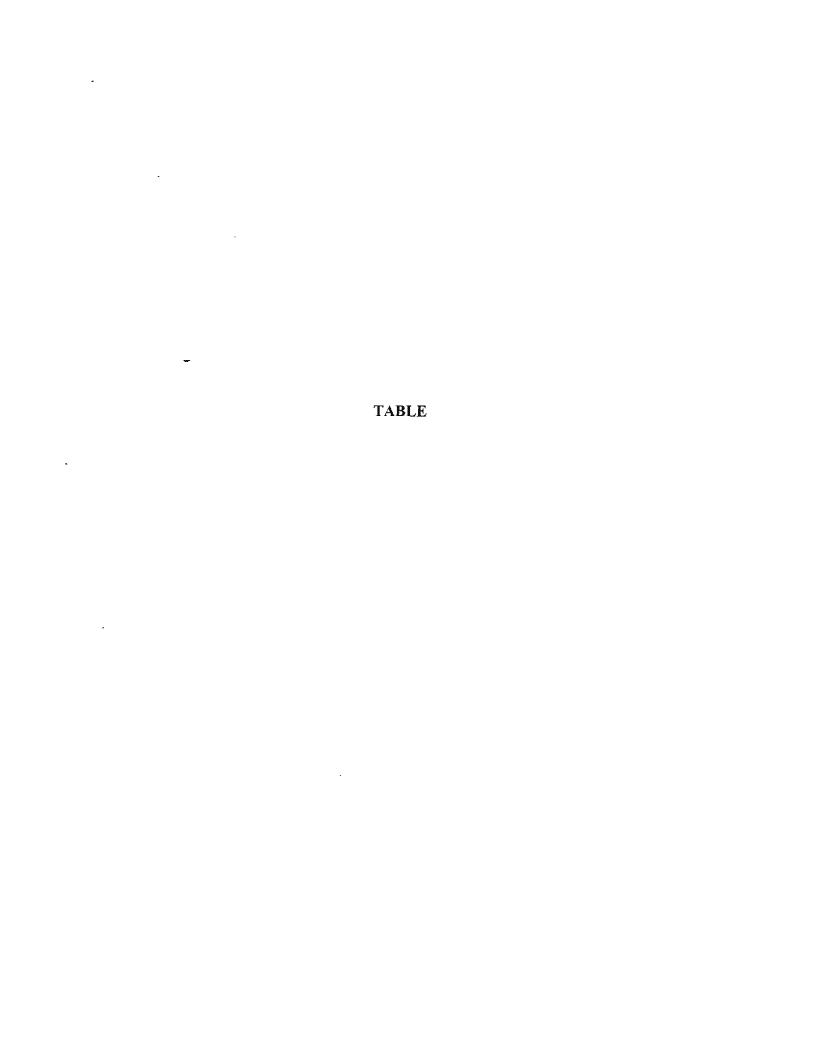
Figure 2 - Site Sketch Showing Groundwater Elevations and Estimated Groundwater Flow Direction on September 22, 2000.

Figure 3 - Site Sketch With PCE Concentrations in Groundwater on September 22, 2000.

Figure 4 - Site Sketch With TCE Concentrations in Groundwater on September 22, 2000.

Appendix A - Field Procedures/Water Sampling Data Forms

Appendix B- Laboratory Results


ce: Mr. Howard Kay

Tedesco Leasing Partnership

475 Seventeenth Street

Suite 940

Denver, CO 80202

TABLE 1 GROUNDWATER LEVELS AND CHEMICAL ANALYSES FORMER MONDO CHROME FACILITY 4933 FIRESTONE BOULEVARD SOUTH GATE, CALIFORNIA

Well	Well Elevation (fi-mal)	Screen Interval (feet-bgs)	Date Sampled	Depth to Groundwater (leet)	Groundwater Elevation (f(-msl)	PCE ug/l (ppb)	TCE (ppb)	cis-1,2-DCE ug/l (ppb)	1,1-DCE ; ug/l (ppb) ;	Vlayl Chloride ug/l (ppb)	1,3-DCA ug/l (ppb)	Total Chromium ug/l (ppb)	Chromium VI ug/i (pph)	Cadmium ug/l (ppb)
MWI	109 40	30-55	12/07/98	41.58	67 82	110	140	68	NI>>1	ND>10	ND>0.5	NA	NA	NA
			03/03/99	40 71	68 69	140	190	ND>10	ND>16	ND>20	ND>10	19	ND>20	ND>4
			06/24/99	40 36	69.04	600	780	ND>25	ND>40	ND>50	ND>25	19	ND>20	ND>4
			09/17/99	40.31	69 09	707	824	9.4	1.9	1.9	ND>0.5	16	ND>20	NO>4
			12/20/99	40 35	69 05	395	635	10	1.6	ND>1.0	ND>0,5	37	ND>20	ND>3
			03/28/00	40 42	68 98	368	538	11	19	ND>1.0	ND>0.5	4	NA.	NA
			06/26/00	40 50	68.90	663	909	125	8 0<01N	ND>10	ND>0.5	46	NA	NA
		**************************************	09/22/00	40 55	68 85	111	L50	- 11	19	ND>10	ND>0.5	ND>3	NA	NA
MWZ	109 45	30-55	12/07/98	41 68	67 77	11	77	16	ND>1	ND>1.0	ND>0.5	NA	NA	NA
			03/03/99	40 81	68 64	6.5	130	13	ND>4	ND>5	ND>2.5	33	ND>20	ND-4
			06/24/99	40.45	69 00	20	160	13	Nto-8	ND>10	ND>5	50	ND>20	ND>4
			09/17/99	40 40	69 05	15	156	21	ND>0.8	ND>1	ND>0.5	40	ND>20	ND>4
			12/20/99	40 43	69 02	27	158	18	ND>08	ND>10	ND>0.5	18	ND-20	ND>3
			03/28/00	40 38	69 07	8.4	138	27	0.8	ND>L0	ND>0.5	19	NA	NA
			06/26/00	40 46	68 99	17	101	230	ND>0.8	NID-10	ND>0.5	38	NA	NA
*****		·	09/22/00	40.47	68 98	3 79	72.6	ND>0.5	ND>0 8	ND>10	ND>0.5	17	NA	NA
MW3	109 61	30-55	12/07/98	41.78	67.83	9.3	75	LO	1.7	ND>10	ND>0.5	NA	NA	NA
			03/03/99	40,94	68.67	5.1	100	6.4	ND>4	NI)>5	ND>2.5	68	ND>20	ND>4
			06/24/99	40.59	69 02	7.4	110	7.3	ND>8	ND>10	ND>5	50	ND>20	ND>4
			09/17/99	40 56	69 05	6.1	145	12	1.2	2.3	1.2	58	ND>20	ND>4
			12/20/99	40.61	69 00	4.4	43	3.6	ND>0.8	ND>10	ND>0.5	37	ND>20	ND>3
			03/28/00	40 54	69 07	4.7	114	13	1.7	ND>16	0.9	19	NA	NA
			06/26/00	40 61	69 00	26	92	ND>0.5	ND>0.8	ND>10	ND=0.5	44	NA	NA
		~400mmuuuunuu maanna maann	09/22/00	40 60	59.01	7.11	fxti	4 97	lól	ND>10	ND>0.5	20	NA	NA.
OTSC MCI	.ş					5	5	fı fı	ñ	0.5	0.5	50		Š

Notes

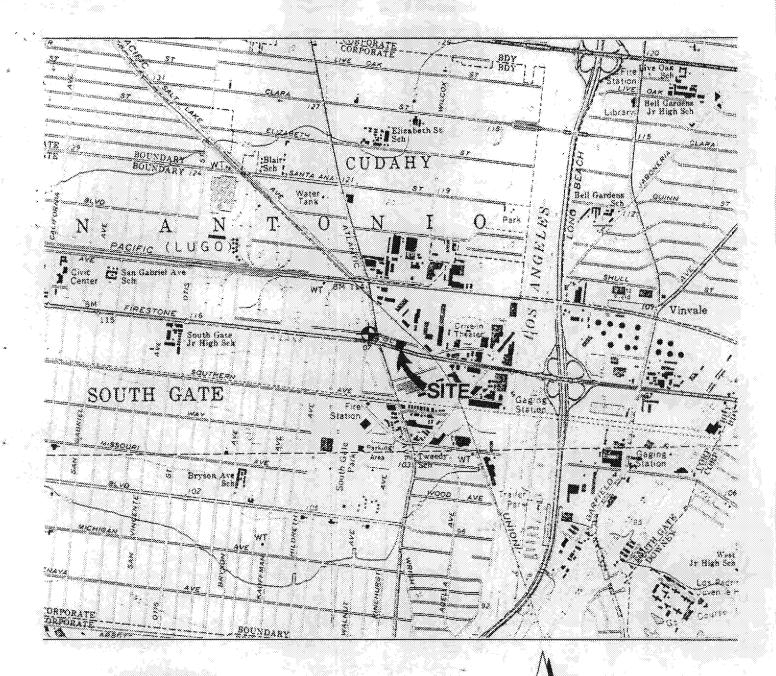
1) Well elevation recorded at top of easing.

7) Maximum Contaminant Levels (MCLs) are enforceable drinking water standards

²⁾ PCE = Tetrachloroethene

³⁾ TCE = Trichlaraethone

⁴⁾ cis 1,2-DCE = cis 1,2 Dichlorocitione


⁵⁾ I,I-DCE = I,I Dichluroethene

^{6) 1,2-}DCA = 1,2 (Dichloroothane

⁸⁾ ND> - Constituent not detected above the stated concentration

⁹⁾ NA - Not analyzed

EXPLANATION

Groundwater well UNOCAL property

MW1 Well number

(53') Depth to groundwater in feet MSL (1994)

NORTH

0 1/2 1

SCALE IN MILES

FORMER MONDO CHROME FACILITY 4933 FIRESTONE BOULEVARD SOUTH GATE, CALIFORNIA

NOTES:

- 1) All locations and dimensions are approximate.
- Base map from USGS 7.5 minute South Gate (1966, photorevised 1981), California topographic quedrangle.
- Groundwater well data from FUGRO West, Inc., project no. 94-48-1320.

Client: TEDESCO LEASING

Project No.: 172-01

FREY ENVIRONMENTAL, INC.

SITE LOCATION MAP

Date: JANUARY 1996

Figure: 1

EXPLANATION

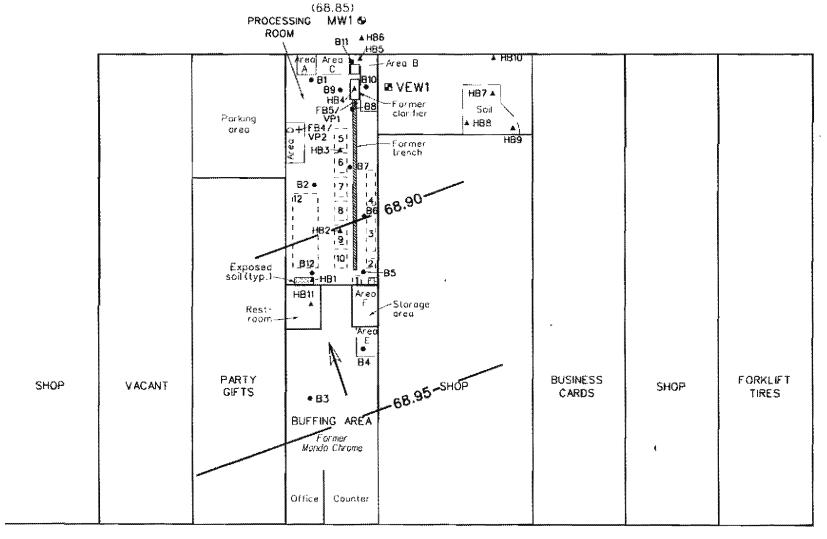
▲ HB6 HAND AUGER BORING LOCATION

811 BORING LOCATION

₩ VEW1 VAPOR EXTRACTION WELL LOCATION

十F84/ SOIL SAMPLE LOCATION/VAPOR PROBE LOCATION VP2

GROUNDWATER MONITORING WELL LOCATION **69** MW3

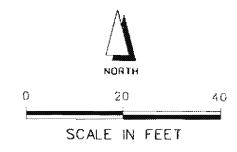

(69,01)With groundwater elevation in feet MSL, on September 22, 2000

> CONTOUR OF EQUAL GROUNDWATER ELEVATION in feet MSL, on September 22, 2000

ESTIMATED GROUNDWATER FLOW DIRECTION

MASON STREET

69.00~


-69.00· Parking lane. (69.01)(68.98)6 MW3 6 MW2

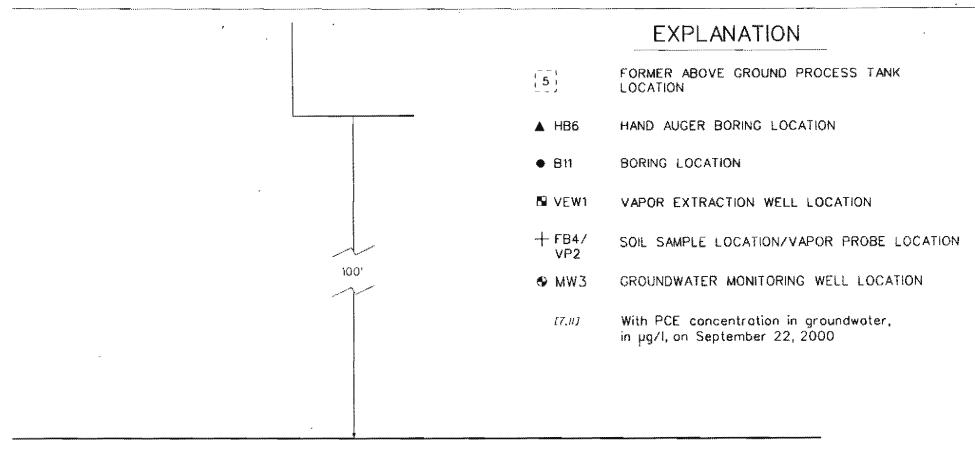
FIRESTONE BOULEVARD

Parking lane.

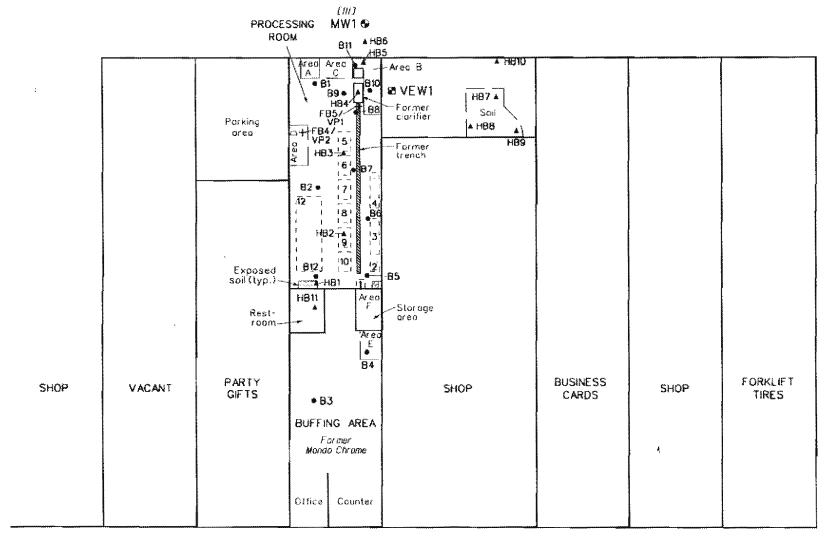
NOTES:

All locations and dimensions are approximate. Base map from Proposed Site Assessment, Former Mondo Chrome Facility, by Fugro West, Inc., project no. 94-48-1320, dated August 1994, and field observations made by FREY Environmental, Inc. July 1996.

FORMER MONDO CHROME FACILITY 4933 FIRESTONE BOULEVARD SOUTH GATE, CALIFORNIA

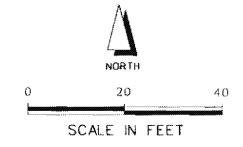

TEDESCO LEASING

Project No: 172-01


FREY ENVIRONMENTAL, INC.

SITE SKETCH SHOWING GROUNDWATER ELEVATIONS AND ESTIMATED GROUNDWATER FLOW DIRECTION ON SEPTEMBER 22, 2000

OCTOBER 2000 Dote:


MASON STREET

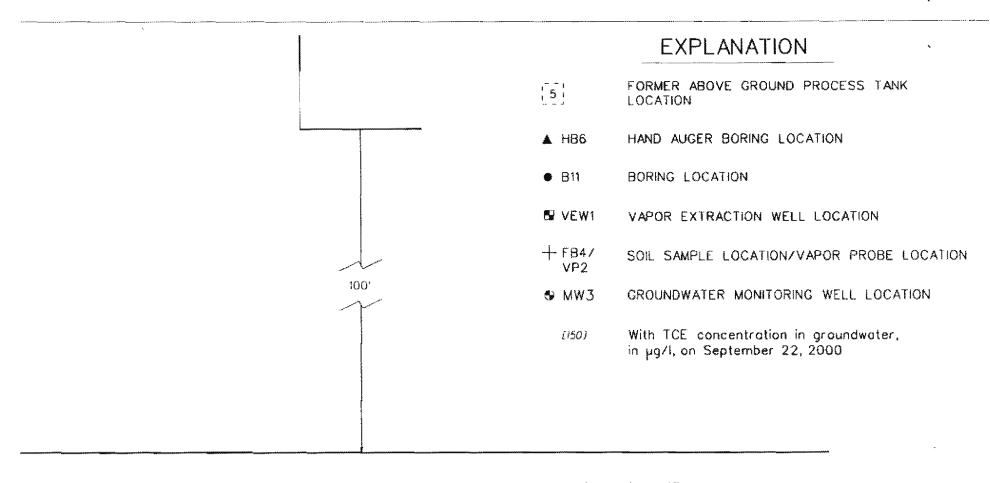
FIRESTONE BOULEVARD

NOTES:

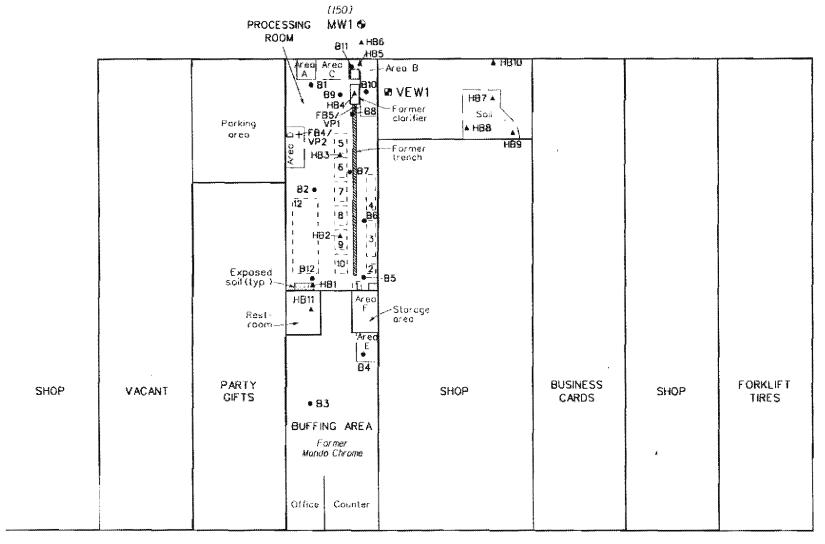
 All lacations and dimensions are approximate.
 Base map from Proposed Site Assessment, Former Mondo Chrome Facility, by Fugra West, Inc., project no. 94-48-1320, dated August 1994, and field observations made by FREY Environmental, Inc. July 1996.

FORMER MONDO CHROME FACILITY 4933 FIRESTONE BOULEVARD SOUTH GATE, CALIFORNIA

Client: TEDESCO LEASING


Project No: 172-01

FREY ENVIRONMENTAL, INC.


SITE SKETCH WITH PCE CONCENTRATIONS IN GROUNDWATER, ON SEPTEMBER 22, 2000

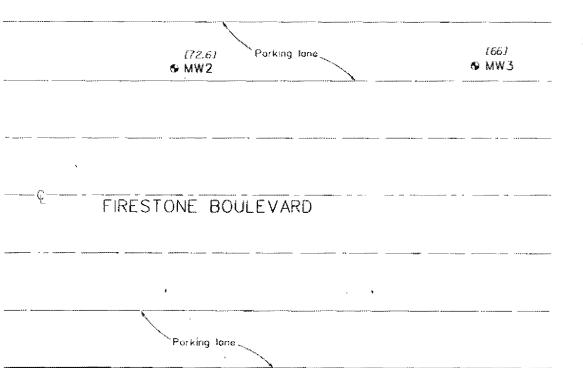
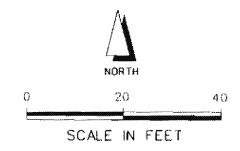

Date: OCTOBER 2000

Figure 3

MASON STREET



NOTES:

1) All locations and dimensions are approximate.
2) Base map from Proposed Site Assessment, Former Mondo Chrome Facility, by Fugro West, Inc., project no.

Chrome Facility, by Fugro West. Inc., project no. 94-48-1320. dated August 1994. and field observations made by FREY Environmental. Inc. July 1996.

FORMER MONDO CHROME FACILITY 4933 FIRESTONE BOULEVARD SOUTH GATE, CALIFORNIA

Client TEDESCO LEASING

Project No - 172-01

FREY ENVIRONMENTAL, INC.

SITE SKETCH WITH TCE CONCENTRATIONS IN GROUNDWATER, ON SEPTEMBER 22, 2000

Date: OCTOBER 2000

Figure 4

APPENDIX A

FIELD PROCEDURES/WATER SAMPLING DATA FORMS

WELL PURGING AND GROUND WATER SAMPLING

- The water level, and depth to the bottom of each well, was recorded using a conductance
 probe prior to well purging. A clear bailer sample was taken and visually inspected for
 turbidity and the presence of free product.
- 2. The groundwater monitoring wells were purged of at least three well volumes using a submersible pump or bailer.
- The well was allowed to recover to at least 80 percent of its original well volume prior to sampling.
- 4. The ground water samples were collected using a stainless steel bailer held by dedicated nylon line.
- All items entering the well; tapes, conductance probe, bailers were cleaned prior to use and between sampling periods.
- 6. Groundwater collected from each monitoring well was placed into EPA approved, zero head space, 40 milliliters (mL) vials and 500 mL containers.
- 7. Each sample was labeled.
- 8. The samples were placed in a bag, and into an ice chest, and cooled following collection.
- 9. The samples were delivered to the laboratory directly after collection. Sample handling, transport, and delivery to the laboratory were documented using chain of custody procedures and appropriate Chain-of-Custody forms.

	ondo (2-0	HROM!				DATE 9/2	22,200 Ramrez
WELL NUMBE	° М.,	11	Well Diameter	(D) 21/		Reterence Poi	m Toc
WATER DEPTI	11th 40.		WELL DEFTH			Feet of H29 in	13-68
TIME	ELAPSED TIME	GALLONS PURGED	ph	Temp (deg. F)	Cond. (µS/cm)	TDS (ppm)	COMMENTS
9:30	1100160		F**	1===::/	1	VFF	Start pump
9:32	02	2	7.45	69, 3	1820		clear water
9:34	<i>ō</i> 4	4	7.35	69.8			C C
9:37	07	4.00	7.53	69.9	1890		10000
9; 37							STAP PUMP
				<u> </u>			·
7.4							
					1 1		
011-2			C/	1/0-2			
9:50 TOTAL GALLO	NS	4		<u> 168.6</u>	<u> 11 % 70 1</u>		<u> </u>
PURGED		7.00	•				
Sample Depth (FT)	41.04		PURGE METHOD Z	Римр	PURGE PUMPIN RATE (GPM)	G /	
FIELD EQUIPM	Ðπ		······································	/ DESCRIPTION			
pH Meter/EC M	ster		<u> </u>	ach	世:	2	
Turbidity Meter							
Pump (Dia_/Typ	e) .		2"12	124/	<u>#1</u>		
Water Level Me	ter		Schi	754	<u>#2</u>		
Baller (Dia.x ler	igth)		1-5×3	6"	<u> </u>		
			· ecipolisia compressona a compresso de la com	······			

	4-INCH WELL:		Ft) x (0.65) =		Gallons
			3 Well Volumes =		Gallons
A		e de la companya de l La companya de la companya de			
	2-INCH WELL:	13.68	Ft) x (0.16) = 4	2.18	Gallons
			3 Well Volumes 4	5.56	Gallons
			5 West voluntees Te		_ Çamons

MW 1

3

GROUNDWATER SAMPLING DATA

JOB NO. L	72-(? <i>1</i>	•	SAMPLING PE	RSONNEL VI	DATE 9/7 Letio Ro		
WELL NUMBE		. 7	Well Diameter	^(D) 27		Reference Poir	1. 700	
WATER DEPTI	4 (ft)	<u>(2 - 47 - 47 - 47 - 47 - 47 - 47 - 47 - </u>	WELL DEPTH	53·0°	5	Feet of H20 in)		8
TIME	ELAPSED TIME	GALLONS PURGED	ph	Temp (deg. F)	Cond. (µS/cm)	TDS (ppm)	co	MMENTS
7: 4							570m	- Privery
7:32	02	1 2	7.63	69.3	3 310		Clear	wa-er
7:34	04	4	7.65	69.4	<u> 13220</u>		100	(1
7:39	07	7.00	7.56	69.3	<u> 13 310 </u>		<u> </u>	(7
7: 37							5500	brown
							1	
8:35			7.57	67.9	34 70	Clear	Samp	16
TOTAL GALLO PURGED	KS	7.00						
SAMPLE DEPTH (FT)	40.9	19	PURGE 2" METHOD 2"	имр	PURGE PUMP! RATE (GPM)	NG /		
FIELD EQUIPM	ENT		MODEL NAME	DESCRIPTION				
pH Meter/EC M			<u> </u>	LEK	步。	2		
Turbidity Meter			フル .、	•	#1			
Pump (Dia/Typ			= pu	<u> دروس</u> ا	11		- A.	
Water Level Me			<u> </u>	<u> </u>	72-2			
Baller (Dia.x ler	igth)		/ * 5 X	5 <i>6</i> *	#1			. **
***************************************					WELL VOLUME	CALCULATIONS	·	
SAMPLE NUME	ER		# BOTTLES				: er) = One Well Volu	me in Gallons

2-INCH WELL: (12.58 Ft) x (0.16) = 2.01 Gallons

3 Well Volumes = 6 - 0 3 Gallons

FREY ENVIRONMENTAL, INC.

IIIE NAME (achas	<u>C¥RO</u>	ме			100	<u> 2,220 </u>
ов но. 15	12-01		•	SAMPLING PE	RSONNEL VI-	<u>Leria K</u>	amiez
VELL NUMBE	^в Ми	1 2	Well Diameter	^(ID) 2"		Reference Pos	" <i>To</i> e
VATER DEPT	H (ft)		WELL DEPTH			Feet of H20 in 1	Well
	40	<u>•60</u>		<u>53. </u>	35	L	12,75
TIME	ELAPSED TIME	GALLONS PURGED	ph	Temp (deg. F)	Cond. (µS/cm)	TDS (ppm)	COMMENTS
6,00							Start pump
3:02	02	2	7.36	170.1	3450		dear water
3:04	04	4	7.28	169.8	3610	1	100
8.07	07	7.00	7.56	69.8	3550		100
3:04					•		STOP PUMP
(145			7.35	69.7	3520	Clear	Samp
OTAL GALLO URGED	NS	7.00					
AMPLE	4		PURGE 2"		PURGE PUMPII	vG	
EPTH (FT)	41.11			ump	RATE (GPM)		
er n series	erar						
<u>ELD EQUIPN</u> N MetenEC N			Hyda	DESCRIPTION	4 0		
urbidity Mete		***************************************	11 / 11 (1				
		***************************************	n,, ,,		#1		
ump (Dia./Tyr ater Level M:		***************************************	£ 10	//// -/	生2		
			1.00	<u> </u>	4-2		
iller (Dia.x le			<u>, - </u>				
***************************************	***************************************			***************************************			
			***************************************		WELL VOLUME	CALCULATIONS	•
MPLE NUME	3535	그렇게 가게되다는 가게되는 생활	# BOTTLES	1			

2-INCH WELL: $(12.75 \text{ FI}) \times (0.16) = 2.04$ Gallons 3 Well Volumes = 6./2 Gallons FREY ENVIRONMENTAL, INC.

3 Well Volumes = _____ Gallons

APPENDIX B LABORATORY RESULTS

ASSOCIATED LABORATORIES

806 North Batavia - Orange, California 92868 - 714/771-6900

FAX 714/538-1209

CLIENT Frey Environmental, Inc.

ATTN: Evan Privett

2817A Lafayette Ave.

Newport Beach, CA 92663 (7741)

LAB REQUEST 59880

REPORTED 10/04/2000

RECEIVED 09/22/2000

PROJECT Mondo Chrome 1/72-0

SUBMITTER Glient

COMMENTS

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Order No. 213766 213767

213768

Client Sample Identification MW2

MW3 MWI

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by.

Edward S. Bchare, Ph.D.

Vice President

NOTE: Unless natified in writing all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratorids are confidential property of our clients may not be reproduced or used for publication in part or in full without our written permission. Thus is for the mutual protection of the public, our clients, and ourselves,

TESTING & CONSULTING Chemical Microbiological

Environmental

Lab request 59880 cover, page 1 of 1

FROM ASSOCIATED LABS

ASSOCIATED LABORATORIES

806 North Batavia - Orange, California 92868 - 714/771-6900

FAX 714/538-1209

CLIENT Frey Environmental, Inc.

ATTN: Evan Privett 2817A Lafayette Ave.

Newport Beach, CA 92663 (7741)

LAB REQUEST 59880

REPORTED 10/04/2000 RECEIVED 09/22/2000

PROJECT Mondo Chrome 172-0

SUBMITTER Client

COMMENTS

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods as indicated on the report. This cover letter is an integral part of the final report.

Client Sample Identification

MW2 MW3

MW1

Order No. 213766 213767 213768

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

ASSOCIATED LABORATORIES by.

Edward S. Behare, Ph.D.

Vice President

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 30 days from date reported.

The reports of the Associated Laboratories are confidential property of our clients may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

TESTING & CONSULTING Chemical Microbiological Environmental Order #: [213766 Matrix: WATER

Client: Frey Environmental, Inc.

Client Sample ID: MW2

Date Sampled: 09/22/2000

Time Sampled: Sampled By:

Analyte		Result	DF	DLR	Units	Date/Ar	ıalyst
200.7 ICP Total Metals - Water Only							
Chromium		0.017	1	0.003	mg/L	10/02/00	NVK
8021B/HVO Halogenated Volatile Organics							
1,1,1-Trichioroethane		NDI	ī	0.5	ug/L	09/28/00	MZ
1,1,2,2-Tetrachloroethane		ND	1	0.5	ug/L	09/28/00	MZ
1,1,2-Trichloroethane		ND	1	0.5	ug/L	09/28/00	MZ
1,1-Dichloroethane		DN	1	0.8	ug/L	09/28/00	ΜZ
1,1-Dichloroethene		ND	1	. 0.8	ug/L	09/28/00	ΜZ
1,2-Dibromoethane		ND	1	1.0	ug/L	09/28/00	MZ
1,2-Dichlorobenzene		ND	ī	1,0	ug/L	09/28/00	MZ
1,2-Dichloroethane		ND	1	0.5	ug/L	09/28/00	ΜZ
1,2-Dichloropropane		ND	1	0.5	ug/L	09/28/00	MZ
1,3-Dichlorobenzene		ND	I	2.0	ug/L	09/28/00	MZ
1,4-Dichlorobenzene		ND	1	1.0	ug/L	09/28/00	MZ
2-Chloroethylvinyl ether		ND	1	0.7	ug/L	09/28/00	MZ
Bromoform		ND	1	0.5	ug/L	09/28/00	MZ
Bromomethane		ND	1	1.0	ug/L	09/28/00	MZ
Carbon tetrachloride	ĺ	ND	I	0.7	ug/L	09/28/00	MZ
Chlorobenzene		ND	1	1.0	ug/L	09/28/00	MZ
Chloroethane	i	ND	1	0.5	ug/L	09/28/00	MZ
Chloroform	İ	ND	1	0.5	ug/L	09/28/00	MZ
Chloromethane	ĺ	ND	1	1.0	ug/L	09/28/00	MZ
Dibromochloromethane		ND	1	0.5	ug/L	09/28/00	MZ
Dichlorobromomethane		ND	I	0.5	ug/L	09/28/00	MZ
Dichlorodifluoromethane		ND	1	2.0	ug/L	09/28/00	MZ
Methylene Chloride		ND	1	1.0	ug/L	09/28/00	MZ
Tetrachloroethene		3.79	1	0.5	ug/L	09/28/00	MZ
Trichloroethene	2.20	72.6	1	0.6	ug/L	09/28/00	MZ
Trichlorofluoromethane		ND	1	0.5	ug/L	09/28/00	MZ
Vinyl chloride	Ī	ND	1	1.0	ug/L	09/28/00	MZ
cis-1,2-Dichloroethene		ND	1	0.5	ug/L	09/28/00	MZ
cis-1,3-Dichloropropene		ND	1	1.5	ug/L	09/28/00	MZ
trans-1,2-Dichloroethene		ND	1	0.8	ug/L	09/28/00	MZ
trans-1,3-Dichloropropene	i	ND	1	1.5	ug/L	09/28/00	MZ

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

Order#:

213767

Client: Frey Environmental, Inc.

Matrix: WATER

Client Sample ID: MW3

Date Sampled: 09/22/2000

Time Sampled: Sampled By:

Analyte	Result	DF	DLR	Units	Date/Ar	alys
	86		444 444			
0.7 ICP Total Metals - Water Only						
Chromium	0.020		0.003	mg/L	10/02/00	NVI
21B/HVO Halogenated Volatile Organics						edik
1,1,1-Trichloroethane	ND	1	0.5	ug/L	09/28/00	MZ
1,1,2,2-Tetrachloroethane	ND	1	0.5	ug/L	09/28/00	MZ
1,1,2-Trichloroethane	ND	I	0.5	ug/L	09/28/00	MZ
1,1-Dichloroethane	ND	T.	0.8	ug/L	09/28/00	MZ
1,1-Dichloroethene	1.61	I	0.8	ug/L	09/28/00	MZ
1,2-Dibromoethane	ND	1	1.0	ug/L	09/28/00	MZ
1,2-Dichlorobenzene	ו סא	1	1.0	ug/L	09/28/00	ΜZ
1,2-Dichloroethane	DN	1	0,5	ug/L	09/28/00	MZ
1,2-Dichloropropane	ND	1	0.5	ug/L	09/28/00	ΜZ
I,3-Dichlorobenzene	ND	1	2.0	ug/L	09/28/00	MZ
1,4-Dichlorobenzene	ND ND	T	1.0	ug/L	09/28/00	MZ
2-Chloroethylvinyl ether	ND	T	0.7	ug/L	09/28/00	MZ
Bromoform	ND	1	0.5	ug/L	09/28/00	MZ
Bromomethane	ION	1	1.0	ug/L	09/28/00	MZ
Carbon tetrachloride	ND	1	0.7	ug/L	09/28/00	ΜZ
Chlorobenzene	ND ND	1	1.0	ug/L	09/28/00	MZ
Chloroethane	ND	1	0.5	ug/L	09/28/00	ΜZ
Chloroform	ND	I	0.5	ug/L	09/28/00	MZ
Chloromethane	ND	1	1.0	ug/L	09/28/00	MZ
Dibromochloromethane	ND	T	0.5	ug/L	09/28/00	MZ
Dichlorobromomethane	ND ND	1	0.5	ug/L	09/28/00	MZ
Dichlorodifluoromethane	ND	1	2.0	ug/L	09/28/00	MZ
Methylene Chloride	מא	1	1.0	ug/L	09/28/00	MZ
Tetrachloroethene	7.11	1	0.5	ug/L	09/28/00	MZ
Trichloroethene	66.0	1	0.6	ug/L	09/28/00	MZ
Trichlorofluoromethane	ND	T I	0.5	ug/L	09/28/00	MZ
Vinyl chloride	ND	1	1.0	ug/L	09/28/00	MZ
cis-1,2-Dichloroethene	4.97	1	0.5	ug/L	09/28/00	MZ
cis-1,3-Dichloropropene	ND	ī	1.5	ug/L	09/28/00	ΜZ
trans-1,2-Dichloroethene	ND	1	0.8	ug/L	09/28/00	MZ
trans-1,3-Dichloropropene	ND	<u>-</u>	1.5	ug/L	09/28/00	MZ

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

Order #: 213768 Matrix: WATER Client: Frey Environmental, Inc.

Client Sample ID: MWI

Date Sampled: 09/22/2000

Time Sampled: Sampled By:

Analyte Result DF DLR Units Date/Analyst

7 ICP Total Metals - Water Only							
Chromium	1	NDI	· 1	0.003	mg/L	10/02/00	NV
Chroman				V.VVJ	1118/17	19/92/99	23 *
B/HVO Halogenated Volatile Organics			99.	:			8888
1,1,1-Trichloroethane	ı	ND	1	0.5	ug/L	09/28/00	MZ
1,1,2,2-Tetrachloroethane	i	ND	1	0.5	ug/L	09/28/00	M2
1,1,2-Trichloroethane	İ	ND	1	0.5	ug/L	09/28/00	M2
1,1-Dichloroethane	ĺ	ND	1	0.8	ug/L	09/28/00	MZ
1,1-Dichloroethene.	i	2.49	1	0.8	ug/L	09/28/00	ΜZ
1,2-Dibromoethane	İ	ND	1	1.0	ug/L	09/28/00	M2
1,2-Dichlorobenzene	İ	ND	1	1.0	ug/L	09/28/00	MZ
1,2-Dichloroethane	İ	ND	1	0.5	ug/L	09/28/00	M2
1,2-Dichloropropane		ND	1	0.5	ug/L	09/28/00	M2
1,3-Dichlorobenzene	İ	ND	ı	2.0	ug/L	09/28/00	M2
1,4-Dichlorobenzene		ND	T	1.0	ug/L	09/28/00	M2
2-Chloroethylvinyl ether		ND	1	0.7	ug/L	09/28/00	MZ
Bromoform	İ	ND	ī	0.5	ug/L	09/28/00	M2
Bromomethane		ND	1	1.0	ug/L	09/28/00	M2
Carbon tetrachloride	i	ND	I	0.7	ug/L	09/28/00	M2
Chlorobenzene	İ	ND	ī	1.0	ug/L	09/28/00	M2
Chloroethane	ĺ	ND	I	0.5	ug/L	09/28/00	MZ
Chloroform	1	ND	1	0.5	ug/L	09/28/00	MZ
Chloromethane		ND	ī	1.0	ug/L	09/28/00	M2
Dibromochloromethane	i	ND	1	0.5	ug/L	09/28/00	MZ
Dichlorobromomethane		ND	1	0.5	ug/L	09/28/00	M2
Dichlorodifluoromethane		ND	1	2.0	ug/L	09/28/00	M2
Methylene Chloride	İ	ND	1	1.0	ug/L	09/28/00	ΜZ
Tetrachloroethene		1111	I	0.5	ug/L	09/28/00	М2
Trichloroethene	İ	150	1	0.6	ug/L	09/28/00	MZ
Trichlorofluoromethane		ND	ī	0.5	ug/L	09/28/00	M2
Vinyl chloride		ND	1	1.0	ug/L	09/28/00	MZ
cis-1,2-Dichloroethene		ND	T T	0.5	ug/L	09/28/00	MZ
cis-1,3-Dichloropropene		ND	1	1.5	ug/L	09/28/00	M2
trans-1,2-Dichloroethene	i	ND		0.8	ug/L	09/28/00	ΜZ
trans-1,3-Dichleropropene	- 1	ND	1	1.5	ug/L	09/28/00	MZ

DLR = Detection limit for reporting purposes, ND = Not Detected below indicated detection limit, DF = Dilution Factor

ASSOCIATED LABORATORIES QA REPORT FORM

QC Sample:

LFB000928-1

Matrix:

WATER

Analysis Date:

09/28/00

ID#'s in Batch:

LR 59880

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RESULT

Reporting Units =

nø/L

Test	Method	Sample Result	Spike Added	Matrix Spike	Matrix Spike Dup	%Rec MS	%Rec MSD	RPD	Prep. Blank
1.3-Oichloroethane	8021	ND	10.0	7.1	73	71	73	3	ND
1.1,2-Trichloroethane -	8021	ND	10.0	9.8	12.4	98	124	23	ND
Terrachloroethene	9021	ND	10.0	10.2	10.1	102	101	1	ND
cis-1,240CE	8021	ND	10.0	9.8	9.7	98	97	1	ND
cis-i J-DCPE	8021	ND	10.0	9.7	97	97	97	0	ND
Trichloroethene	8021	ND	10.0	9.8	9,9	98	99	1	ND
Bromodichloromethave	8021	ND	10.0	10.4	10.5	104	105	1	ND
trans-1 3-Dichloropropase	8021	ND	10.0	9.3	9.6	93	96	3	ND
Benzene	8021	ND	10.0	9.7	9.8	97	98	1	ND
Toluene	8021	ND	10.0	9.8	9,9	98	99	1	ND

^{* «} Matrix Interference, LCS OK, Data Reported.

ND - Not Detected

RPD - Relative Percent Difference of Matrix Spike and Matrix Spike Displicate

MREC-MS & MSD - Percent Recovery of Matrix Spike & Matrix Spike Displicate

PAREC LIMITS: 65-135 RPD LIMITS: 35

LCS RECOVERY / METHOD BLANK

Test	Spike Added	UCS Results	LCS % Rec	Limits % Rec
i 2-Dichloroethane	10.0	6.8	68	65-135
I.I.2-Trichloroethane	10.0	10.6	106	65-135
Totrachloroetkene	10.0	9,9	99	65-135
cls-1 2-DCE	10.0	9.9	99	65-135
co-13-DCPE	10.0	10.3	103	65-135
Trichloroethene	10.0	10.0	100	65-135
Bromodichloromethane	10.0	9,9	90	65-135
trans-1,3-Dichloropropane	10.0	10.6	106	65-135
Benzene	10.0	10.0	100	65-135
Toluene	10.0	10.1	101	65-135

Method Blank = All ND

ASSOCIATED LABORATORIES LCS/MB REPORT FORM

QC Code #:

H092600W89

Prep. Method: 3010

Prep. Date

09/26/00

Matrix: WATER

Wt./Vol:

0.5ml/25ml

LCS Source(s):

QC21-LOT#QC2/91/1;QC7-LOT7A92/1

Lab ID#'s in Batch:

LR 59974, 59901, 59902, 59925, 59938, 59880, 59943, 59949, 59889

Reporting Units:

mg/L

Lab Control Sam	ile (LCS)						Method	Blank
Element	Method	Result	True	%Rec	L.Limit	U.Li mit	DLR	ND
Arsenic	207).7	2.096	2.0	104,8	80%	120%	0.005	U
Selenium	200.7	2.203	2.0	110.2	80%	120%	0.004	U
Thallium	200.7	2.114	2.0	165.7	80%	120%	0.003	ij
Lead	200.7	2.064	2.0	103.2	80%	120%	0.002	IJ
Antimony	200.7	2.090	2.0	104.5	80%	120%	0.006	IJ
Barium	200.7	1.950	2.0	97.5	80%	120%	0.002	IJ
Beryllium	200.7	2.046	2.0	102.3	80%	120%	0.001	U
Boron	200.7	1.922	2.0	96.1	80%	120%	0.011	U
Cadmium	200.7	2.018	2.0	100.9	80%	120%	0.004	IJ
Chromium	200.7	1.996	2.0	99.8	80%	120%	0.003	U
Cobalt	200.7	2.004	2.0	100.2	80%	120%	0.005	U
Copper	200.7	1.965	2.0	98.3	80%	120%	0.004	U
Iron	200.7	2.036	2.0	101.8	80%	120%	0.011	U
Manganese	200.7	1.940	2.0	97.0	80%	120%	0.002	U
Molybdenum	200.7	1.975	2.0	98.8	80%	120%	0.010	U
Nickel	200.7	2.021	2.0	101.1	80%	120%	0.008	U
Vanadium	200.7	1.946	2.0	97.3	80%	120%	0.005	U
Zinc	200.7	2.045	2.0	102.3	80%	120%	0.002	U
Silver	200.7	0.8573	1.9	85.7	80%	120%	0.005	U
Aluminum	200.7	2.004	2.0	100.2	80%	120%	0.052	U

Notes: RESULT - Sample Result; TRUE - True Value; %Rec - 100*Result True

L.LIMIT - H.LIMIT - Low - High Control Limits
PB - Preparation Blank; ND - "U" for Non- Detected

ASSOCIATED LABORATORIES

QA REPORT FORM (MS/MSD)

QC Sample:

LR 59974 - 214187

Matrix:

WATER

Prep. Date:

09/26/00

Analysis Date:

09/28/00 - 10/02/00

Lab ID#'s in Batch:

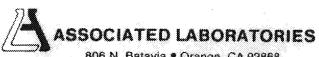
LR 59974, 59901, 59902, 59925, 59938, 59880, 59943, 59949, 59889

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RESULT

REPORTING UNITS = mg/L

TEST	Method	Sample Result	ND	Spike Added	Matrix Spike	Matrix Spike Dup	%Rec MS	%Rec MSD	RPD
Arsenic	200.7	0.004	U	0.1	0.100	0.102	100.0	102.0	2.0
Lead	200.7	0.007		0.2	0.202	0.204	97.5	98.5	1.0
Selenium	200.7	0.014		0.1	0.119	0.124	105.0	110.0	4.1
Thallium	* 200.7	0.003	U	0.1	0.070	0.068	70.0	68.0	2.9
Antimony	200.7	0.030	U	1.0	0,939	0.973	93.9	97.3	3.6
Barium	200.7	0.033		1.0	0.917	0.953	88.4	92.0	3.9
Beryllium	200.7	0.003		1.0	0.899	0.940	89.6	93.7	4.5
Cadmium	200.7	0.003	U	1.0	0.874	0.917	87.4	91.7	4.8
Chromium	200.7	0.031		1.0	0.883	0.930	85.2	89.9	5.2
Cobalt	200.7	0.322		1.0	1.220	1.290	89.8	96.8	5.6
Copper	200.7	0.176		1.0	1.080	1.130	90,4	95.4	4.5
Molybdenum	200.7	0.010	U	1.0	0.850	0.890	85,0	89.0	4.6
Nickel	200.7	0.023		1.0	0.883	0.919	86.0	89.6	4.0
Vanadium	200.7	0.005	U	1.0	0.860	0.904	86.0	90.4	5.0
Zinc	200.7	0.022		1.0	0.903	0.935	88.1	91.3	3.5
Silver	200.7	0.005	U	0.4	0.371	0.391	92.8	97.8	5.2

^{* =} MS/MSD outside Limits. LCS/MB Accepted.


NC = Not Calculated

ND = "U" - Not Detected

RPD = Relative Percent Difference of Matrix Spike and Matrix Spike Duplicate

%REC-MS&MSD * Percent Recovery of Matrix Spike & Matrix Spike Duplicate

% REC LIMITS = 75 -125 RPD LIMITS

806 N. Batavia * Orange, CA 92868 (714) 771-6900 * FAX: (714) 538-1209

59860

CHAIN OF CUSTODY RECORD.

Date 9, 22, 200 age / of /

CLIENT <i>ERE</i>	Y ENVIRONMEN	ral ,h.			·					49 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1
ADDRESS 2817 A LAFAUETTE AVE NEWPORT BEACH CA72GG3			PROJECT MANAGER EVAN PRIVETT						Samples Intact Yes X No County Seals Intact Yes No X Sample Ambient Cooled X Frozen Same Day 24 Hr. Regular X 48 Hr.	
PROJECT NAME MONDO CHROME 172-0			PHONE NUMBER 723-1645 SAMPLERS: (Signature)							
SAMPLE NUMBER	LOCATION DESCRIPTION		DATE	TIME	WATER	AIR	SOLID	NO OF CNINRS	SUSP CONTAM	TESTS REQUIRED
MW2			122,00		Х			3		EPA 8010
MW 2	Liter							1	3.077	CHRomiun
MW3								3		EPA 48010
<u>Mw 3</u>	Lifer							1		CHROMIUN
Mwj								3	,	EPA 8010
Mw	Liter		$ \Psi $		\mathbb{A}					CHRONIUM
		12								
Relinquished by:) .	y. (Signature)					V/22/00		t hereby authorize the performance of the above indicated work.	
Relinquished by: (Signature) Received by: (Signature) Propries			Laboratory for analysis:				Date	Date/Timesco		
Special Instructions:								DISTRIBUTION: White with report. Yellow o AL. Pink to Courier		